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Abstract

A simple X-ray powder diffractometric (XRD) method with artificial neural networks (ANNs) for data modelling
was developed to recognize and quantify two crystal modifications of ranitidine–HCl in mixtures and thus, provide
information about the solid state of the bulk drug. The method was also used to quantify ranitidine–HCl from tablets
in the presence of other components. An ANN consisting of three layers of neurons was trained by using a
back-propagation learning rule. A sigmoid output function was used in the hidden layer to facilitate non-linear fitting.
Unlike other techniques the ANN method described here employed pattern recognition on the entire XRD pattern.
Correct classification was mainly influenced by the XRD pattern resolution. It was shown that data transformations
improved the quantitative performance when the XRD patterns were not contaminated by other components. Only
smoothed X-ray diffractograms were required to distinguish between the two crystalline forms in a mixture. In the
case of ranitidine–HCl quantification from tablets, where significant interference with tablet excipients was present,
better results were obtained without data transformations. The trained ANN perfectly quantified ranitidine–HCl
polymorphic forms from mixtures (mean sum of squared error was less than 0.02%) and ranitidine–HCl form 1 from
tablets (recovery=98.65). Excellent quantification performance of the ANN analysis, demonstrated in this study,
serves as an indication of the broad potential of neural networks in pattern analysis. While the system described has
been developed to interpret XRD patterns, peak detection has implications in every chemical application where the
recognition of peak-shaped signals in analytical data is important. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Polymorphism, the ability of a compound to
crystallize in more than one arrangement of

molecules, is a significant problem in the pharma-
ceutical industry. A major goal of pharmaceutical
research and development is to produce the same
drug substance and product it continuously. The
existence of a compound in more than one crys-
talline form may lead to difficulties in formula-
tions. Any polymorphic change in the dosage
forms can influence its stability and even
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bioavailability. It is vital to select the polymorph
with the desired properties, and predict problems
such as the unwanted crystallization of other poly-
morphs.

Non-destructive methods of analysis that allow
rapid, sufficiently precise and reliable quality con-
trol have wide applications in many production
systems. X-ray diffractometry (XRD) is a power-
ful technique for characterising pharmaceutical
solids [1], which makes this technique particularly
useful for the identification of different poly-
morphs of a drug. Every crystalline solid phase
has a unique XRD pattern independent of the
other components in the mixture making indepen-
dent analysis feasible [2,3].

The verification and recognition of peak shaped
signals in analytical data and their application to
quantitative studies are significant problems. Ex-
perimental data usually contain overlapping sig-
nals and noise that make sensitive and reliable
peak recognition and quantification difficult.

This research evaluated the feasibility of using
artificial neural networks (ANNs) to recognize
peak-shaped signals in analytical data. ANNs
have been shown to be superior to conventional
classifiers (e.g. multiple linear regression) at pat-
tern classification where the input is noisy and the
system is not well defined [4–6]. Besides, ANNs
are non-linear estimators and can establish more
sophisticated responses. They can store large
amounts of pattern information with relatively
few neurons and connections.

The main aim of this research involved two
steps: to investigate the ability of ANNs to recog-
nize and quantify two crystal modifications of
ranitidine–HCl in mixtures from X-ray diffraction
data and thus, provide information about the
solid state of the active ingredient; to quantify
ranitidine hydrochloride from tablets in the pres-
ence of other components.

2. ANNs

Neural computing simulates the neural behavior
of living beings so that a computer can learn to
differentiate or model without detailed program-
ming and conventional analysis. An ANN is com-

posed of a number of interconnected processing
elements (artificial neurons) organized in layers,
the input layer, the output layer and the hidden
layer between them. The input layer neurons re-
ceive data from a data file and the output neurons
provide the ANN’s response to the input data.
Hidden neurons communicate only with input and
output neurons. They are part of the large internal
pattern that determines a solution to the problem.
Like people, an ANN learns by example from
experience through a training phase when some of
these interconnections are strengthened and some
are weakened, so that a neural network will out-
put a more correct answer. The complexity of the
network is related to the number of weights and
strength of the weights. The number of weights
depends on the number of hidden units and the
number of hidden layers. Most functions can be
approximated using a single hidden layer.

Although there are many types of ANNs, the
one that predominates in the area of pattern
recognition is the feed-forward, back-propagation
network. In this type of model input data are fed
forward through the ANN to optimize the weights
between neurones, or to ‘train’ the ANN. The
output is related to the combined input and
weights by a transfer function, most commonly
being of a sigmoid type function. The optimiza-
tion is, therefore, non-linear.

The use of the weighted links is essential to the
ANN’s recognition abilities. As the ANN reads
the input and output values in the training set the
error in the prediction is propagated back through
the system, and the interunit connections are
changed to minimize the error in the predictions.
This process is continued with multiple training
sets until the error is minimized across many sets.
When the ANN produces the desired output, the
weighted links between the units are saved. These
weights are used to predict the correct outcome on
a new set of input data.

3. Experimental methods and materials

3.1. Materials

The two polymorphic forms of ranitidine–hy-
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drochloride (form (I) (Ch.-B 560018) and form
(II) (A.-Nr. 32005)) and ranitidine–HCl tablets
(150 mg of form 1) and excipients (mycrocrys-
talline cellulose Avicel PH 301, vinylpyrolidone–
vinylacetate copolymer Kollodon VA 64 and
magnesium stearate) were provided by Dolorgiet
Pharmaceuticals. The polymorphic forms were
characterised using elemental analysis, XRD,
Fourier transform-infrared spectroscopy (FTIR),
diffuse reflectance infra-red Fourier transform
spectroscopy (DRIFTS), Raman spectros-
copy (Raman), scanning electron microscopy
(SEM) and light microscopy as described previ-
ously [7].

3.2. Methods

In the preliminary experiments about 360 mg of
powder samples were compressed using different
pressures of 1, 2 and 4 t. The resulting tablets
were exposed to X-ray scans. The relative intensi-
ties of the major peaks remained constant indicat-
ing that the application of pressure did not induce
any preferred orientation. In addition, a flat sur-
face was achieved, minimizing negative interfer-
ence due to sample curvature or irregular sample
surface.

Binary mixtures were made from powder forms
with different factions of polymorphic form 2 in
the mixtures as follows: 0, 1, 2, 5, 10, 20, 30, 50,
70, and 100%. All the mixtures were mixed
geometrically.

Powder samples from the tablets were prepared
by gently grinding each tablet into a fine powder
using a glass mortar and pestle.

Powder samples (360 mg) were compacted as
tablets (¥ 16 mm) under a mass of 2 t, and were
fitted into the aluminum sample holder for X-ray
scanning. Binary mixtures were made in triplicate
and the tablet powders were prepared in ten
replicates.

The XRD scans were performed on a Philips
wide angle X-ray powder diffractometer with X-
ray generator (PW 1130/00) and goniometer
(PW1050, Philips, Almelo, The Netherlands). A
copper target X-ray (wavelength 1.541A Cu Ka)
tube was operated at a power of 40 kV and 30
mA. The divergence slit was set at 1° for the
X-ray beam and at 0.1° for the receiving scintilla-
tion detector. The scans were carried out at a step
size of 0.04° and counting time for 0.5 s per step
within the ranges 7–48° (2U).

Binary mixtures with 0, 1, 2, 10, 30, 50, 70 and
100% of form 2 were used as a working data set
for training and testing the ANN. Binary mixtures
with 5 and 20% of form 2 and tablet samples were
used as the external prediction set.

3.3. Pre-processing of the data

The powder X-ray diffractograms of form 1
and form 2 showed characteristic diffractions at
17.04° 2U, 21.9° 2U, 22.5° 2U, 26.3° 2U, and
20.02° 2U, 23.3° 2U, and 27.4° 2U, respectively,
for identification (Fig. 1).

The use of intensities at all U degrees of the
diffractograms as input data vectors was not
manageable because of the large dimensionality
of the input data space. In addition, many of
these data were weakly correlated with structural
properties. Reduction and transformation of the
input data space to limited angles was necessary
to enhance the ANN performance. Thus, the
powder patterns were sampled between 16° and
30° (2U), the region containing the charac-
teristic diffraction. This reduced data to 350
steps (2U). These steps were further processed
to reduce the amount of data being fed to the
ANN and to smooth the noise in the diffrac-
tograms.

Fig. 1. X-ray diffractograms of two polymorphic forms of
ranitidine hydrochloride.
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Fig. 2. X-ray diffractogram of the tablet mixture.

and one output neuron for active ranitidine–HCl
ingredient form 1.

During training and testing the number of hid-
den neurons was varied from 2 to 20 and training
cycles from 0 to 50 and ANN performance was
tested after each addition of a neuron.

3.5. Training

The ANN’s training was accomplished by cy-
cling through the entire assembly of training ex-
amples and correcting the weights using the
standard back-propagation rule to minimise the
sum squared output error. At the start of the
training run both weights and biases were initial-
ized with random values and the working data
sets were split randomly into training and testing
data sets. Data sets from six sample mixtures
(75%) were used for training, while testing was
done with the data sets from the two remaining
sample mixtures (25%). The training set was used
to train the network and the testing set was used
to monitor overtraining of the network, each with
a corresponding mean squared error (MSE). The
training was stopped at each run when the error
in the test set began to rise. The results of the four
runs were averaged.

The error in mapping the training values de-
creased as the number of hidden neurons was
increased. By increasing the number of hidden
neurons the ANN more closely followed the to-
pology of the training data sets. However, exceed-
ing an optimum number of hidden neurons
resulted in tracing the training pattern too closely
and the system was overtrained. This behavior is
analogues to overfitting a regression equation to a
set of experimental data. If there are too few
neurons the ANN will not perform well on either
training or unseen data. If there are too many
neurones the ANN will be overtrained and will
exhibit poor prediction for unseen data.

Some books and papers offer ‘rules of thumb’
for choosing a number of hidden units. A com-
mon practice is to use the geometric or arithmetic
mean of the number of input and output neurons
for the hidden layer, or the natural logarithm of
the number of input classes [9]. Other rules are
concerned with the number of training sets avail-

Firstly the 350 steps were reduced into 70 equal
sized windows (dB=5), and subsequently into 35
equal sized windows (dB=10). Each window was
computed as the average of intensities at five or
10 consecutive steps, respectively. These data were
used as inputs together with the corresponding
weight fraction of the forms as output to train the
ANN.

For the tablet assay (Fig. 2) the angular range
was reduced to the region between 26 to 29° (2U),
that contained two significant peaks at 26.3° and
at 27.4° (2U) for form 1 and form 2, respectively,
since the tablet excipients showed significant inter-
ference between 16 and 26° (2U). Transformed
data (dB=5) and non-transformed data (dB=1)
from 26 to 29° (2U) were fed to the ANN.

3.4. Network topology

A standard feed-forward network, with a back-
propagation rule and with a single hidden layer
architecture was chosen. A single hidden layer
was used for simplicity, and because there is little
evidence to suggest that a larger number of hid-
den layers improves performance [8].

The ANN used in this investigation consisted of
70 (dB=5) or 35 (dB=10) inputs for the aver-
aged XRD pattern values, one hidden layer, and
two output neurons, one for the fraction of each
form. The number of hidden neurons and number
of training cycles were adjustable parameters and
had to be optimized.

For the tablet assay the trained ANN consisted
of 20 inputs (dB=5) for the averaged pattern
value between 26 and 30° (2U), one hidden layer
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able and suggest the number of weights is less
than one tenth of the number of training sets.
Such rules are concerned with over-fitting. If the
number of training sets is much larger than the
number of weights the ANN may suffer from
under-fitting. The number of hidden units de-
pends critically on the number of training sets,
amount of noise in the data and complexity of the
classification.

3.6. Method 6alidation

The testing error is not a good estimate of the
generalization error. One method for getting an
unbiased estimate of the generalisation error
is to present the ANN with a new, third set of
data, that were not used at all during the
training process. The relative error (ERR%) of
prediction for binary mixtures with 5 and 20% of
form 2 and tablet samples were used to
compare the generalization ability of the models
(Table 2).

4. Results and discussion

Unlike other techniques the ANN method
employed pattern recognition on the entire
lower resolution XRD patterns. Input data
were transformed prior to analysis. The
purpose of transformation was to compress the
number of the input data, reduce the noise and
to enhance the interesting features in the pat-
terns.

4.1. Ranitidine–HCl binary mixture assay

For a sample composed of a combination of
polymorphs, the diffractogram of the sample was
approximately a linear superposition of the dif-
fractograms of each individual polymorph. Each
polymorph presented to the diffractometer pro-
duces a powder pattern that is characteristic of
that crystalline structure. By presenting binary
mixtures of two different polymorphs to the sys-
tem a database of the powder patterns is
constructed.

The network was trained twice: once using 70
inputs and again using 35 inputs. The criteria for
judging the best model were mean squared error
(MSE) of model prediction and coefficient of
multiple determination (R2) (Table 1).

The test results showed that the sufficient num-
ber of hidden neurons was from 10 to 15. The
MSE was B0.0002 and R2 was greater that 0.99
(dB=5). Ten hidden neurons were enough to
achieve good convergence on the training data
which is confirmed by the low relative error
(ERR%) for the external validation data set
(Table 2)

The results for the network trained with more
inputs were improved for the training data and,
more significantly, for the test data. Better results
were obtained with 70 input data (dB=5) than
with 35 (dB=10) (Table 1). The trained ANN
quantified two polymorphs in the mixtures. These
results indicate that an effective mathematical
mapping is possible when noise is present in the
input pattern.

Table 1
Effect of data transformation on ANN performance for the assay of ranitidine–HCl from binary mixtures

Number of hidden units dB=5dB=10

R2 training/testingMSE training/testingR2 training/testingMSEa training/testing

0.009/0.005 0.85/0.95 0.0009/0.0007 0.97/0.984
0.009/0.003 0.90/0.966 0.0004/0.0002 0.99/0.99
0.006/0.003 0.99/0.998 0.0003/0.00020.91/0.97

1.00/0.990.0002/0.00010.91/0.9610 0.006/0.002
12 0.006/0.003 0.91/0.98 0.0001/0.0002 1.00/0.98
14 0.006/0.005 0.95/0.98 0.0001/0.0001 1.00/0.99

a Individual errors are squared, summed and divided by the number of individual errors.
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Table 2
Effect of the number of hidden neurons on the generalisability of the predictions

Predictions with different numbers of hidden neurons at 50 training cyclesaMeasured percentage of form 2

8 106 12

Mean 5.5 5.4 4.9 5.5
0.7 0.1S.D. 1.11.1
8.6 2.917.0 14.6ERR(%)b

Mean 20.4 19.4 20.0 20.0
0.5 0.2S.D. 0.10.4

23.5 17.827.0 13.9ERR(%)

AV ERR (%)c 22.02 16.08 10.35 14.23

a n=6.
b ERR(%)= (predicted−actual)/actual×100.
c AV ERR(%)=ERR(%) averaged for 5 and 20% data.

4.2. Tablet assay

For the tablet assay the X-ray experiments re-
vealed many interfering peaks (Fig. 2). The tablet
excipients interference with ranithidine–HCl form
1’s characteristic diffractions was mainly between
16 and 25° u. Therefore, the ANN was trained
with 100 (dB=1) and 20 (dB=5) input data
from 26 to 30° u and with one output neuron for
the ranitidine–HCl form 1 concentration. It was a
difficult task to distinguish the signal from the
noise for the narrower pattern range used for
training and testing the ANN, since there are
more specific powder pattern features between 16
to 23° u for form 1 (Fig. 1).

Since tablet excipients interfered with rani-
tidine–HCl form 1’s characteristic diffractions,
resolution of XRD patterns has a great influence
on the network performance. Better results were
obtained with higher resolution XRD patterns
(Table 3). The presence of small peaks (low inten-
sity X-ray lines) increased the success of predic-
tions over low resolution diffractograms with less
details, where transformations smoothed the data
and eliminated small peaks.

The trained ANN quantified ranitidine–HCl
form 1 from tablets. The test results showed that
the sufficient number of hidden neurons was from
6 to 12 to achieve good convergence on the train-
ing data (Table 3a and b).

5. Conclusions

There are many different methods available for
multivariate statistical analysis, function fitting or
prediction and ANNs represents a subset of these.
The conventional multiple linear regression
(MLR) approach involves an iterative process of
spectrum decomposition and regeneration until a
mathematically synthesized spectrum closely
matching the true spectrum is generated. This is
time consuming and often requires manual inter-
vention. Most of these techniques depend on the
subjective decision regarding peak shapes and
peak overlapping that will prune the number of
possibilities significantly. The drawback of the
XRD powder method is that the data grossly
overlap. While the determination from a well-re-
solved powder diffraction diagram is quite feasi-
ble, the presence of overlapping reflections
generally prevents the full use of the available
information. A solution is to include as observed
data in the least-squares refinement the integrated
intensities (areas under overlapping peaks) of the
composite diffraction peaks (the Rietveld method
[10]). The Rietveld method creates an effective
separation of these overlapping data. A major
disadvantage of a procedure is that details in the
profiles of these peaks are lost and such a system
may not perform well on the new set of data, e.g.
will not generalize well. Besides, in contrast to the
present work, no cross-validation study with the
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testing data set is performed during conventional
MLR.

From a statistical modeling point of view,
ANN models belong to the general class of non-
parametric methods. In this sense they are more
powerful than parametric methods that try to fit
experimental data into a specific parametric form
model. However, non-parametric methods like
ANN contain more free parameters and hence
require more training data than parametric ones
to achieve good generalization performance.

The ANN approach described employs pattern
recognition on the entire XRD pattern in a spe-
cified range. The whole diffractograms were used
in the identification and quantification process
instead of the individual peaks. Correct quantifi-
cation was mainly influenced by the overall ap-
pearance of the XRD patterns, especially the
small peaks. It was shown that data transforma-
tions improved the quantitative performance
when the pattern was not contaminated by other
components. Only integrated or low resolution

Table 3
Predictions of the ranitidine–HCl content in the tablets using different numbers of neurones in the hidden layera

Trial Hidden neurones

120 2 4 6 8 10

(a) dB=5b,c

61.3452.99 71.9366.20 70.28 61.15 44.571
45.6572.9956.2250.462 55.9241.44−3.91

70.2438.63 59.4152.91 60.85 54.95 57.483
49.28 48.05 62.684 54.64 53.16 61.19 67.19

58.7967.1750.3955.815 63.1053.8224.54
29.24 53.52 62.356 55.53 68.1952.75 58.99

48.87 61.27 69.5657.137 66.4851.14 57.90
51.02 65.79 65.678 45.82 58.0559.56 65.56

56.4267.0954.699 52.5622.69 44.75 59.30
34.25 52.46 66.44 61.0410 55.3062.4352.15

55.6462.9052.95 66.1734.47Average 52.16 61.46
16.50 7.206.80 3.75 2.82 3.54S.D. 3.76

Recovery (%) 108.9761.12 93.89 111.52 98.65 92.48 117.32

(b) dB=1d,e

50.11 56.69 55.251 5.68 79.35 68.98 65.23
71.2866.7163.4173.242 75.8980.0145.35

53.44 48.7975.19 55.23−6.693 56.13 40.81
53.24 52.204 −4.99 48.4389.66 58.73 66.22

50.01 56.58 54.825 65.625.72 79.39 59.08
19.33 82.73 67.06 66.03 54.11 61.14 59.536

55.964.27 53.7772.59 55.27 65.12 48.747
50.53 57.69 55.699.298 75.97 59.20 65.42
52.22 58.51 57.099 85.0411.22 64.28 66.09

54.2455.8349.663.34 65.7510 59.0081.67

50.90 57.58 56.269.25Average 80.16 62.27 65.48
13.97 4.73 6.32S.D. 3.86 5.685.33 3.75

116.93111.19143.1416.52Recovery (%) 100.47102.8290.72

a Theoretical ranitidine–HCl content is 56.4%.
b R2

train=0.977−0.984; R2
test=0.899−0.995.

c MSEtrain=0.0002−0.0006; MSEtest=0.001–0.002.
d R2

train=0.998−0.999; R2
test=0.899−0.995.

e MSEtrain=0.0000; MSEtest=0.000−0.001.



S. Agatono6ic-Kustrin et al. / J. Pharm. Biomed. Anal. 22 (2000) 985–992992

X-ray diffractograms were required to distinguish
between two crystalline forms in a mixture. In the
case of ranitidine–HCl quantification from
tablets, where significant interference with tablet
excipients was present, better results were ob-
tained without data transformation, as transfor-
mations reduced the contribution of small peaks.
The ranitidine–HCl from tablets was analysed in
the presence of the excipients directly with mini-
mal sample pretreatment.

The ANN extension presented is believed to
increase the value of the XRD based quantifica-
tion of ranitidine–HCl polymorphs to the point
that it could be the method of choice in some
advanced research settings. One advantage of this
approach is that most of the intense computation
takes place during the training process. Once the
network is trained, the XRD patterns can be
rapidly analysed. The ANN analysis enables
quantification of polymorphs in low fraction, di-
rectly from a XRD pattern of a sample in less
than 1 h. Furthermore, the quantification perfor-
mance of the ANN analysis, demonstrated in this
study, serves as an indication of the broad poten-
tial of neural networks in pharmaceutical re-
search. This research shows that ANNs are
beneficial in analysis of diffractional data. While
the system described has been developed to inter-

pret XRD patterns, peak detection has implica-
tions in other chemical applications where the
recognition of peak-shaped signals in analytical
data is important. Further work should explore
the use of alternative network architectures.
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